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PROPERTIES OF EVEN-LENGTH BARKER CODES
AND SPECIFIC POLYPHASE CODES WITH

BARKER TYPE AUTOCORRELATION FUNCTION

INTRODUCTION

A Barker code is a sequence of N numbers xj (where x, - ±I), which has the following auto-
correlation function:

KN forK-0R (K) - Xil .Xi x+k - (la)

0 or±l forK - ,2 2. (N- I)

i.e., the *time sidelobes" in the autocorrelation function do not exceed the level of 1.

In radar applications, the sequence modulates the phase of the signal (some constant carrier fre-
quency) from code element to code element. For a stationary target the above property (1a) holds, but
now, since the time variable is continuous, we pet small triangles in the autocorrelation function whose
peaks are 0 or ± 1, and a big triangle whose peak is N (the match point). For a moving target we actu-
ally have the crosscorrelation function of the transmitted code and the target return, resulting in higher
sidelobes. Only the autocorrelation function will be considered here.

The known code lengths having the property of Eq. (Ia) are 2, 3, 4, 5, 7, 11, 13 (1].

It has been shown that no Barker code of odd length exists for N > 13. Also, if an even-length
Barker code exists, it must be a perfect square (2), i.e., N - P. Since N Is even, lIs also even.

The purpose here is to investigate the possibility of even-length Barker codes greater thin the
known of length 2 (+ + and - +) and 4 (+ * - + and + + + -). Possible candidates for this are, for
example. lengths of 16, 36. 64, 100. etc.. but is was verifled 121 that up to N- 6084 (1 78) no
Barker code exists.

I .Y, is not restricted to +1. -1, but can be any complex number whose agnitude is unity
I:x, - 1, then the autocorrelatlon function is rmquired to fulfill:

t,; N for X- 0

RO 0or 4 unity nugnitude 0Ib)

for -l1, 2. N-i

In general. R (K) is a complex number. The complex wrjupgte is denoted by'.

DEFINITION (for convenience): A code with properly (Ib) is a po/oode. It is actually 4
polyphase code with Barker type autocorrelation function (excluding the real Barker codes). Specific
types of polphodes are the generalized Barker codes (31 which are derived from a 'father" real Ba'ker
code. These will be discussed later.

Manuuc bmt tcbnw 9. KU.



SHIMSHON GABBAY

The following analysis will investigate the properties of even-length Barker codes and polphodes
(where N = 12, N and I are even), if they exist. The analysis of Barker codes (for which Turyn [21 con-
siders evidence overwhelming that they do not exist) will lead to the analysis of the general case of pol-
phodes.

GENERAL ANALYSIS: SPECTRUM

The general description of a phase-coded signal is shown in Fig. 1. We are interested in a con-
stant amplitude code; thus, without loss of generality, we assume its amplitude is 1, and its carrier fre-
quency is constant fo.

S(t)

+1 243+4 +1 +
1 j xA -1 II 1l.it

ith CODE ELEMENT
.0L T COMPLEX ENVELOPEN

o T
Fig, I - Go•cral ilcsciption of a ph= ,-od sinal

The signal duration T is divided into N code elements, each of TIN duration, and each code ele-
ment has phase 0, (for Barker codes ,6, can take only 0,w values corresponding to real x, which equal
+1, -I in the sequence), where i - 1. 2..... N. For polphodes. 0, can take any value resulting in a
complex sequertwe xv, We will specify the restrictions on ,, whenever they apply,

Taking out the carrier frequency, the complex envelope of each code element is I/.L - eC', The

analysis from now on will be carried out with the complex envelope.

The ipectrum of the signal is

S (f)W m j(). (2)

where Sj(f) is the spectrum of the i& code element:

"S (f) f SW(,)e ',2 'di (3)

Sw ,- Sl•e"JI"Ii + S+S1 (re-) 
1 dd +,

r
+f' (4)+ _ SNltlej' 11~ld1.14

and after a change of variables in the integrals (in order to have the saene limits in each one)S- f J r .-

S+ ed + ... (5)

2!1] ,,
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SS(f) - j of ( (+)

+ e"13( e-eJ2,fT1/NJ -v TIN + (6)

-ej21rff/IN{e~"+(2zI

+ eJ(3-211 2 TIN) + (7)

SW eH*f1NL TI sin (2irff/2N) JAbove 4(8)
-2 2v-f- T2N ITerms J'

define

2-'rf"- (9)

and i is a scaled frequency variable, Then,

SWf - +eJ e'i' -4) eJ

+ eý(*) + , + + el- LW . (10)

This is the basic spectrum expression that w-, will utilize through the analysis, T'he sin 0/4, term
in Eq. (10) is due the basic code etlemun! length TIN, and the terms in the right bracket are due to the
phas, coding inside the code.

If the signal bandwidth is a. and we sample it at the Nyquist rate, then TIN 1/B (this is
becAue in general we use I and Q processing, which requires sampling at onte, and not twice, the
reciptocal of the Wnmdwidth), In this case o -•,/B and (-1/2) TIN -11/21 But we will proceed
with the genetal anaysis,.

The power ýpcctrunl is
:.- tSU)0 -s($ S'av•, 1I)

and it is the Fourier tratsform of the autocorrtation function. N1te th.t !S(f)tI is always a real func-
tion of f and R (W) is an evwn function of r for teal codes, while R (0) - R*(-r) for complex codes.

To sae this relation in the discrete phasc code, let us examine in detail Barker codes of lenhhs ?
and 4,

-BAIKECODE?

This code is known to be:

I ~ ~ 0 0 0 #w 0

* I'++
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Notice here that changing the signs of all the code elements does not change the property of the
autocorrelation function. This means that one can choose arbitrarily the sign of the first code element.
This is true for any Barker code, and polphode, and we will choose the first code element to be x, - +1
(or equivalently k1 = 0)) from now on, unless otherwise stated.

T
The autocorrelation function is shown in Fig. 2 (where r = K-, K 0. 1. N - 1).

R(T)

7
CORRELATION PEAK AS RESULT
OF 7 TERM IN THE POWER SPECTRUM

TIME SIDE LOBES

| .... ___.__ CRRLAIO PAKAS RESULT O

4W

"12w

MATCH POINT
(PEAK OF CORRELATION)

Ft# 2 - Autocarregttion function or Bitkot co& 7

According to Eq. (10). substituting the known b, for this code we get:

s - - + ,I - - e-04 + ti"I 10 
-

and

so. W'f A i4 1+ tX + VJ4~ - C/o* + -ei'j. tol#0 b)

Carrying out the multiplication of Eqs. (0 2a) and (12b), we get:

IS w S(f) so)(f) " I 'r-4 - e- too" .-.

-N 2 7 - 2 cos4 -2 4-2cos 4-2cs12 12.4

We see in Eq. (13) the Fourier transform relation between IS•flI' and the autocorrelation fune-
tion; the 7 term in the squarc bracket of Eq. (13) gives the correlation peak. (The triangle, whose

width is one code clement TIN, is the result of the term, as known by Fourier tranform

4If'



NRL REPORT 8586

theory.) The three sidelobes (on each side of the match point) are the result of the 2 cos 44, 2 cos 8ip,
2 cos 120 terms in Eq. (13), (for convenience, we will call these terms in IS(f)12 "pseudo-
frequencies," though we should remember that they don't represent frequencies of the spectrum, since
the spectrum is actually continuous); these "pseudo-frequencies" give impulses when transformed.

When these impulses are convolved with the triangles due to (sin J1 they give the triangle-shaped

sidelobes on each side of the match point. Note that the amplitudes of the cosine terms in Eq. (13) are
2, but in the transform process each cosine appears as 2 impulses whose amplitudes are 1, so that the
amplitudes of the sidelobes are 1 in this specific code. Note also that the sign of the "pseudo-
frequencies" determines the sign of the sidelobe (in this example, all the sidelobes are negative).

Note also that for this example, the multiplication of S (f) by S*(f) caused several e-j2*' terms
of the spectrum to disappear; here the e-A'ý, e-jJ" and e-A0°• terms of the spectrum disappeared after
the multiplication, resulting in zero level sidelobes at the corresponding locations of the autocorrelation
function (see Fig. 2).

It is clear that the last term of the spectrum (generally e-(N - '~, and here e-Jr2') will never
disappear after the multiplication (since no other term can cancel it), corresponding to the fact that the
furthest sidelobe of such code is always + I or - 1.

Clearly, these observations will hold for any phase-coded signal with unity amplitude (e.g.,
polyphase codes like Frank codes), but to any sidelobe in the autocorrelation, say of g magnitude, there
will be a corresponding 2g cos (K 2-$2 + 0) "pseudo-frequencyb in the power spectrum. Generally g
can be bigg•c than 1 but for polphodes g is required to be smaller than 1 (0 is some angle that depends
on the code).

To show this process for even-length codes, examine the Barker code of length 4. It is known
that there are two possibilities which we designate as Barker Codes 4A and 40.

BARKER CODE 4A
+ + + -

0e 0 0 0 0"

The autocorrelation function is shown in rig, 3:

:.?V

•~~s Y')-- •' + d•+ e4# d (14b)

and f
1S(")I - 5)SW soV) 4 +--I~' 42 cos 4 - 2 cos 6i.. i

14NI H jit

Agltin, the. autocorrelation function corresponds to the "pcudo-frequenciet* of the power spec-
trum in Eq. (15); the match point is 4, the first sidelobe is +1. the second sidelobe is --I, and :he

1cs 
4i term is missing, resulting in zero level a( the corresponding pint of rig. 3 (K - 2).

Note that hcrc. for an even length code, the •stoi of the *pseudofrequencies' cos 20., cos 65 :re
opposite. %hich results in opposite sign tidelobes in R (T). 'This property is true for any even-length
(N - 1) Barker code Ill, that meant;

ii S . .. ? '• • • ' ' . ... . .. . • - 1 I I... . - - -: , . '-
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4 RIT)

S3 RESULT OF

2l 2 /AI,
STKKT

-2 -1 01 2 K

Fig. 3 - Autocorrelakion function of Barker code 4A

R(K) + R(N K)- 0 (16)

for any K - 1, 2,... N - 1, or equivalently, in IS(f)12 we will have for any ± 2 cos K24s term a
corresponding TF2 cos (N - K)2P term, such that their signs are opposite. This also means that

RIK - 0 since the point K - does not have an 'image.' Figure 4 shows the image structureT 2  2

of R (r). The point K - 1 is the *image' of K - N - 1, K -2 is the "image* of K - N - 2, etc.

RIT)

"IMAGES"

0 1 2 3 N N.2NA T

R (K O) N R(K !!I, a
2

hg. 4 no *atwur of the ma itutoww" (U*WtVA 0(af CV e .leh Oak"t .C*W

BARKER CODE 48
+ + -- +

: 0 0 a' 0

S*V) - - -#- .+ (17b)

and

IS(f)i- (IN) 1

6
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The correlation function is shown in Fig. 5. Figure 5 is "similar" to Fig. 3. But now in the power
spectrum (Eq. (18)). the 2 cos 20, 2 ccs 60 terms both have changed signs when compared to Eq.
(15), so that Eq. (16) is fulfilled. This caused the sidelobes in Fig. 5 to change signs when compared to

Fig. 3.

RR(T)
4

3

2A . A --------
0-3

Fig. 5 - Autocowrrieatior function of Barker code 40

Note that Eq. (16) does not hold generally for polphodes.

DEFINITION: Define a G-polphode as a polphode in which

R(K) + R'(N- K) O. (16a)

This is actually a generalization of Eq. (16). Notice that R(W) can be a complex number in sen-
oral.

As an example. examine the gnerallzcd Barker code 4 131:

S0 W/I2 It V121 • -I Sin +

S(f) - - ". I ji - 1 •" +OJ4**. I19

and

to he-aue4 + 2 sin 24 + 2 sin -6 (20

wff~resl ing to the values of the autocorelatio"I function:

R(K-0)-4. RtK- I0-j. R(K -21- 0. R(K-3)-J.

We dearly sce that Eq. (16a) tb fulfid, whi mcam that the above code is a G-pollphode.

SYNTHESIS ATTEMFi

With the above analysis we now try to synthesize the Barker type auiocofcrlation function foc

even-length (N 12) codes. Larker and G-polphode.

j,7
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Barker Code

Suppose there exists an even-length Barker code x1. x2 ..... xN. x, is either +1 or -1.

The autocorrelation function of the code must be as illustrated in Fig. 6.

The match point R (K - 0) - N appears. The nearest and furthest sidelobes must appear with
magnitude 1 and opposite signs (corresponding to cos 2tp and cos (N - 1) 20 terms of the power spec-
trum). In Fig. 6 we plotted arbitrarily one of the two possibilities for these sidelobes. At the midpoint

R - 0 as explained before. The dotted sidelobes in the figure might or might not appear.

But if one dotted sidelobe (say of index K) appears, there will be a corresponding image" sidelobe (of
index N - K) with the opposite sign, as required by Eq. (16). Of course, there will be another two
sidelobes on the other side of the match point (negative 7).

N

2W (N-1) 2w#

•ll•• /AIMAGES

.INI I0 1
t ' , " ,v -' "

Fit 6 - Auiixte~uato ruwwa~ of ei,"4fth uk cak* I pwa

N w fr omnt 1ookin $ at the des d R (t) in Fi, 6, w can detcr nline the sL*ucture of the power

4~ II I(21)

N 2cos2# 2cos t +0 .2cos...-2cos(N-2)20+2 cos (N-I) .1(N 2 .. ~2cs... ... +O.2co ' • MSt A.........±

must appea

The spectrum S(f) of the code is given ',y Eq. (10). 1"he mwRnit'wl or s(J) must equsl the
square root of the power spectrum I$(f) at every potin t (0 was defined in Eq. (9) and represents
the frequency variable). Spwtkally, at the Nsampling points

0.f-VT f-2/T. W-T. ...

* ¶
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1.
S1we must have:

N N

This is a necessary condition Cor the existence of even-length Barker codes, but might not be a

sufficient condition. Actually, Eq. (22) gives us a set of N equations that must be fidfUled.

Not.- that in Eq. (21):

cos 2 -0- cos (N - 1) 2 - 0
for 0-0 cos4 0-cos (N-2) 2,0

cos 6 - 0 - cos (N - 3) 2 - 0
etc.

cos 2 "/N - cos (N - I) 21/N
for -p '/N cos 4 v/N - cos (N - 2) 2-iN

cos 6 vIN - cos (N - 3) 2v/N
etc.

cos 2 • iv!N - cos (N - 1) 2 ivIN
for 0" wiIN cos 4 Wn cos (N - 2) 2 1alN

cos 6 wiN-c (m (N - 3) 2 i/IN
etc.

or gonetaly:

cos -2 h'/N ,cos (N - K) 24 I/N. (23)

1"his mcan-s that the 1**w, Wxtt-uni at the N sampling points 0 iir/N! (i .0, 1 ... jM - 1), is

(we E0. (16), (21)):

i.e.. the po r spetruM Simples at ilN 0(i , 1. N - 1) must be some owratN- N-

times (sin ) (the Us tam was, incqtxpid as theot the bast c code c.ment

length TIN).

Now the speotrum in those Numplins points (see r:. (10)) is:

S IV) !1 44 +0

"I- M Ij-+I I I

Si'%+ ,," +d + + " (25)

9
41 !'

I .. . . . . _ _ I,.ty . . . . . . • +I .. . • . .
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Denote
21r

eN W (26)

(this is the known basic phasor of DFT where WN = 1).

S f) I-T= je-iJO {e in f S 1 1 } I [ ejo + WleJ'I02 + W2iejl'3 + .. + W(N-l0 ej"6'NJ (27)

N N

and requiring (22) results in N equations:

S_0: 1. eJ1 + I.eJ+1 + .eJ113 + ... + 1 • eJ' - IN - 1 (28.1)

i- 1: II"j + W" eJ" + W2 eJ'03 +... + WN•-eJl- IN - 1 (28.2)

i- 2: iet .eJ' + W2 eJ142 + + WN-2 eJ•"- IN - (28.3)

iN-i1: 11-ej" + WNiv eJ12 + WNV2 Ce13 + .. + We'*' r/N -I (28.N)

and in matrix notation:

11 1 1... eJ' /La_2

I W wA ... W"N ej IL (29)

I WN-I WN' 2 , W eJ , .

Going from bq. (28) to Eq. (29), we had to take care of the absolute value in the left side of
(28), by placing some :tnknown phases a, in the right side of (29) for each element whose magnitude
should be exactly 1 -v N.

We can write Eq. (29) as:

A X - V (29a)

where A is the known DFT matrix (N x N matrix), which is nonsingular with dot A d 0.

- 10

•. .•-; ,.-'/,, .
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The phasor Wis on the unit circle (see Fig. 7).

X1  eJ~

X2  e

X3  C

XN e

is our unknown vector, which represents the required Barker code (xi - -W1, o is either 0 or 7r).

'Lan v2

I/0 3  V3
V - • is a vector whose

/ VNt

"elements have magnitude I - w/'. .,ith unknown phases ap.

COMMENTS

(1) Equations (29) are exact necessary conditions.

(2) Equations (29) hold only for even-length codes N - 12, A similar analysis for Barker codes 5, 7,
11, and 13 shows that the spectrum samples (of the sequence) are not required to have a constant
magnitude.

IMAG.

REAL

Q

Vitt ' - The hauc 1*1 phawt W14. on the unt cit de

<j7II

- - * t:•:,,4 L

.. .. . . . . . . . . . . . . '\f
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G-polphode

A similar analysis for the G-polphode, where Eq. (16a) is fulfilled, will give us the same result.
For any time sidelobe R (K) there will be a corresponding R (N - K) time sidelobe such that,

R (K) + R*(N - K) - 0

or equivalently: Real [R (K)] + Real [R (N - K)] - 0

Im[R(K)W - I,,,[RU(N - K)] - 0.

This means that the pair of sidelobes R (K) and R (N - K) contribute to the power spevtrum:

2 Real [R (K)] (cos K • 2i - cos (N - K)20} + 21. [R (K)] {sin K 24, + sin (N - K)21P}.

This contribution of the pair goes to zero for the N sampling points 0s = ir!/N, since

cos K • 2- - cos (N - K) 2
NV,7. ,, (30)

sin K -2-L- - - sin(N- K)2
N N

thus resulting in

t T I I.in

N N

as before.

So Eqs. (29) and (29a) hold also for G-polphodos, but the code elements can be any complex
number with unity mingnitude !x,, I.

Thus, from now on we can proceed with a a sequence qf numbers X, (real for Barker and complex
fo~r G-polphode) which when DFT transformed (Eq. (29)). gives a vector with constant magnitude cle-

aVntS - .-nt .

We will exaatine first Barker codes.

BARKER CODE STRUITUR2E AND PROPERTIES

To derive several properties of an oven-length Barker code (if it exists), we write the mapping Eq.
(29) ti a convenient form:

I X 1 + I -.X j+ NI, . + 1 X 4 + ,. + 1 N " ,- IL L 31 1
i I • NI + W1 •X2 + W" •XI + W') 'X, +X .. +0't"x•-I.•1.2)

I •x++ , X2 ' X) + W .x 4 +.+ .W"'"xV - I/a (31.3)

12

(3.3

I? _ _(11
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1. X1  x + 1 x3 -1. x4 + ...- 1 XN '=l.aN+I (31.N/2+1)

I -1 + WN-2 . x 2 + WN-4 • x 3 + WN-6 .x4 + ... + W " .' = ILIaN,-1 (31.N-1)

1 x, + WN-I . x 2 + WNV-2. x 3 + WN-3 .x4 + ... + W .x ILN (31.N)

From Eq. (31.1): since x, is real (± 1), aI must be 0 or ir, so that:

X + X2 +x3+...+ X N

i.e.,

number of pluses - number of minuses - ± L. (32)

But since their sum is N - 12; then:

CASE 1: if number of pluses - 1- then number of minuses -S2 2

(e.p, Batkers + + - + and + + -)

• 12-112+1I
CASE 2: if number of pluses -, T then number of minuses - 2

(e.g., Barkers + - - - and - + -- )

For simplicity wt'a discuss only Case I in the following few paragraphs (Case 2 is the 'opposite" case).

Note that the difference b.,.ween the number of pluses and minuses gets larger as the code length
increas.,s, which is -iot tie case in PN bWary sequences.

From Eq. (31.N/2+1): qr'n &Nt4+I must Ih v or ir, and

X - X%+X1-14+,-,+XV-l-xN- ±I (33)

Odd pluses Rnd oven minuses contribute positive numbers in Eq. (33). while even pluses and odd
minuses contribute negative numbers.

Denote:

t+ I-m , number of odu plusls, then - - m - number of even pluses
•'o• J i':- lZ ~~~~j.. I .' ubrofoe ~uo

.n - numbor of Wdd minuses, then 2 a number of even2iinuses

Ftomn E.(3):

)* mn + +n -t1

Ti

-... . . ......... ... .VIJ
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We have two possibilities:

{42
(A) m = n, but since m + n - (number of all the odd element., we get:

12

number of odd pluses - number of odd minuses - 4 (34.1)

(e.g., Barker + + -+

(B) m - n - 1. this implies similarly that:
12

number of even pluses - number of even minuses - - (34.2)
V 4

(e.g., Barker + + + -)

From Eqs. (31.2) and (31.N): each weight of the real code elements (xi - ± 1) in Eq. (31.2) is the
complex conjugate of the corresponding weight in (31.N), e.g., WO - WNI=1, (W2)' - W-2, etc., so
that I/a.2 must be the complex conjugate of ILa., or:

a- -2(35.1)

Similarly:

CiN-1 " -a3 (35.2)

aN-2 - -0a4 (35.3)

a Nl + 2 - -of4a (35.4)

These equations say that for real codes, Eqs. (29) take the form:

X2 I L0/..110 r

A ' Q- . (36)

XN

14
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From Eqs. (31.1) and (31.N/2 + 1): by adding and subtracting, we get (taking into account Eq.
e' ~ (36)):

2(xl + X3 + X5 + X7 + .. +xN-1) -- or (37a)

2(x 2 + x4 + x6 + x+ ... + xN) -or (37b)
0

which are another form of Eq. (34).

Further properties of Barker codes can be derived if one can follow the requirements logically. As
an example, consider the (N/4+0) which is a member of Eq. 31, and its conjugate. With property (36)
in mind (note that these two equations give t 900 shift in the weight from each code element to
another), we get:

1 x 2 -X3 + Jx 4 + 1X 5 -JX6-1 X7 + .X +... - , (38.1)

and

Sx1 +x- •x 3 -Jx 4 + x5 + Jx6-1 x2 -Jx+... -X A-. (38.2)

By adding and subtracting we get

2(x 1-x 3 + xs-x 7 + x,-xtt + x,3-x 15 + ... ) -t8 + Ij-L., (39.1)

and

2J(-x 2 + x4 -x 6 + x- x 10 + x12-x 14 + x16-...) - tLKt- '/c , (39.2)

or

(xI-x 3 + Xs-X + ... )"I co , (40.1)

and
•. . ~(- XI + X4- Xf + Xi ..)- I Sin/3 (40.2)

Equations (40) can be fulfilled simultanously for a few possibilities of the angle/3, since their left
side is an integer (with plus or minus sign). Actually, if Ad Sp(not multiple of 5), the only values for
/3 are 0, ± 900, ± 1800, which result in an integer on the right side of Eqs. (40.1) and (40.2). If
I - Sp (multiple of 5), there are other possibilities to get an integer in the right side, since
cos/3 3/5 or cos /3 - 4/5 results in sin p - 4/5 or sin /3 3/5, which means we have another "fam-
ily" of possibilities that can fulfill Eqs. (40). Actuilly, they are all the possible combinations of ± 3/5,
± 4/5 for the cos /3, sin #3.of Eqs. (40).

Another important observation is derived by adding all the equations of (31). Then in the left
side, all the code elements, except x1 , will cancel (because the weights are uniformly distributed pha-
sors in the unity circle of the complex plane), resulting in:

x - /ai + I/a 2 + /La+ ... + ION ,

15
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and since we can assume x, - 1,

12 /ILO+ I/+_2 + 1__• + ... + UI0or 7 + + IL-ax +I-_*2, (41)

which means that all the 12 phasors in the right side of (31) or (36), whose magnitudes are and which
appear in pairs of complex conjugates, must sum to 12. This means also that one possible choice of the
phasor's vector in the right side of (31) is the code itself X times L In such a case, the right side of
(31) is:

1 I+ x2 + ... + Ixv- AI~x +X2 + --- + xN) - !•1'/- 12 (42)

as required by (41).

All the above properties ((31) through (42)) can be utilized to reduce the search for even-length
Barker codes.

PHYSICAL INTERPRETATION FOR BARKER CODES

We can examine now the physical meaning of Eq. (36), as illustrated in Fig. 8. We need to input

the real code x, (± 1) to a DFT system, such that we get a constant amplitude I in the output, while the
phases of the output must fulfill some constraints.

X2 OFT
X2----• (N "- 12 -- sl tLo.a

POINTS) tL

IL.ORR

n
REAL - , -- - ..REAL

S.'' '2

IMAG. GTIMAG.

STIME DOMAIN FREQUENCY DOMAIN
SFit I - Phy. meant of Eq. (36): the DFT of the real equance X, gives conwtnt magwtude phasm

i t16
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Now we'll see how the Barker codes for N - 4 (1- 2) are derived by the above analysis (see Fig.
9).

W- eJ 2v1 N _ e-j 21/4- -j

1W W2 W -j-
A- Ww 4  

- 1- I "

W3  1 j-l-

We need:

,4 • x, 2/_.2~ l
x, [2L 1

A X2 2L
X3 2/#or 0

We see from Fig. 9 that C, only can create the dc-frequency term 2/0, C2 only can create the
fundamental frequency 2 la, etc. Thus the required code C is a linear comli-nation of C1, C2, C3, C4
( in the time domain). If we can find a code C all of whose elements are of unity magnitude, then it is
the required code (note that C3 has two possibilities).

C1: 1/2 1/2 1/2 1/2

C2: 1/2/a -j - 1/2L -1 1/2L +j -12

C3 : (A 1/2 -1/2 1/2 -1/2
® -1/2 1/2 -1/2 1/2

C4: 1/2 La -j -1/2 -I 1/2 L +j -12

C. X, X2  X, X4

We have only one parameter (a) to choose in order to have the required code, all of whose elements
must have unity magnitude. We see that if C3 (0 is examined, a must be +90" or -90° (from the first
column, in order to have x, - 1), so the code is:

C: x 1-l,x 2 - 1,x-1,x4 -- lfora- 90*
C: x 1 -I, x2 -- 1, xI-l. x 4 - lfora--90*

and if C@) is examined, a must be 0* or 1800:

C: x 1  Xl. x 2  I- x3-l1 x 4 -Ifora- 0"
SC': XI - 1 X2 I X) - 1, X4 -I for ar 180°

All the above codes C are legitimate Baker codes which fulfill all the requirements, Here for N
t 4, we had only parameter a to choose, but when N i6 large. we have many parameters to choose, such

that all the elements in C will add up to unity.

A pictorial interpretation of the requircnemnt established by (36) is illustrated in Fig. 10 (only for
Barker codes) for three elements of the vector matrix described by that equation.

. )17
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¶21
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IMAG.

ARADIUS I \
-\

S~PLUSES '2

REAL

-~~ Fig.R& O - PictWea 1nawtpWeAti d( Eq. (36)

LINEAR ALGEBRA POINT OF VIEW

We now analyze our problem for either Barker codes or G.polphodes. Equation (29), whicb is a
necessary coadilon for both of them, can be written as:

Lai I kQJ

•./n, -

or:

I Lrai

A,,19
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Define:

B--A (43)

which is a modified DFT matrix (each element in A is divided by I in order to get B.

Then:

B_- _X , (44)
where Y is the vector:

/16

I/a 2

y - .(44a)

Equation (44) requires the code vector X to map to vector Y (unity magnitude elements) through
the modified DFT matrix R

This can happen in two ways:

1, The vector Y is some scalar X (might be complex) times X. Then:

kg - XA: (45)

We will call this case an eigenvectur mapping code (we have mentioncd this possibility for Barker
codes after (41))

2. Y AX (46)

We will call this case a nonelgenvector mappinS code.

In order to investigAte the elgenvector mappian case, we will use some properties of the matrix R
(over the complex field).

Writing (44) in detail, we get:
I I II

I W W, WN-I X1 YJ
!• ,I . " -7

I 2I " A " Ws-2 7xz

¶,- (47)

I WN-2 W'V- 4  W2  XiV-I Ys-I

""I W-' WN-2 W

where IxI- 1. iYJ- i- 1, 2. N.

20Li;
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PROPERTIES OF B

a. The columns (or rows) of B are orthonormal:

(V) T -)j I {o J (48)

where V denotes the i1 h column vector (note that this is the definition over the complex field, as a gen-
eralization of orthonormality over the real field).

t,. B is symmetric:

B- Br (49)

Also, its rows (except the first and (N/2 + 1)0h) are pairs of complex conjugates, e.g., the NMh row
is the complex conjugate of the 214 row, the (N - 1)'h row is the complex conjugate of the 314 row, etc.

c. B is a unitary matrix (this is the complex generalization of an orthogonal matrix over the real

field, where A is an orthogonal matrix if AA T ,), which is defined by:

,j( 8 .)T, L, (So)

or equivalently:

a- (a*)T, (50a)

and in our case, due to (49):

(- "51)

From (47), (51):

- B" Y. (52)

d. Idet BI- 1 (53)

for any unitary matrix (see [4), p. 112), which means that B is a nonsingular matrix of rank N.

c. All the N eigenvalues of B (as a unitaty matrix) are of unity magnitude (See 141 p. 135, prob,
22);

tI•I- 1 4-1, 2..., N. (54)

It can be verified that in our cae,, at teas m, - 1, X, -1 arc JgIWvaluC4 of possibly with
wome multiplicity. To show this:

,•s I W W1-. ,, l I I
17 I

W)
•VI 1 I; I 8-i IB- •.I (SS)

I W-' W' - 2 W

21
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Adding all the rows of (55) to the last row we get:

1B - X I - (56)

I-A -A .,. -A`

This last determinant is zero for X` I 1 and A-2 -- (since for both of them we get two propor-
tional rows in the determinant).

f. 8, as a unitary matrix, maps any vector X to vector . such that their energies are the same
(mathematicians call this property preservation of length) i.e.:

X, X; + X2 X2 +... + X. X;- Y, Y,+

Y Y2* +..- + YN Y;- (57)

Note, however, that if lxil - I (unity magnitude code) Yj generally are not necessarily of unity
magnitude. Our problem is to find that Ixj I - that will map to IYI - 1. and, of corse, it is possible
from an energy point of view.

As an example, check the case 1 2 (N 4):

I I 1 1

2 2 2 2

ZI =i I2 2 2 2

2 2 2 2

2 T 2T 2

fl If the code is an Cinvcctor of 8 then, BX -- ••X

Thecigpavtuesu e 1,- ÷I. A1 - +1, ,- -1. - 4 -J

at: do(t IB - Al- (/I - U (A- 1) ( + 1) (A + j). (58)

Note that indecd IA,1 - I and Idet BI Ijl I (when substituting k -0 in (58)).

Ihe eigenveclors ame:

I. for A X 2 - I we have two eigenvectois:

i0 0 0 0
0 0 0M"-00

• (B-l)j'--O-- 1 0- - V

0 1 0-1

22
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1 0
Z -1 and V2 - •

1 0

V1 is a Barker code, while V2 is not. Actually, any linear combination of VI and V2 that has
constant amplitude is also a good solution (in our case only VY and -. V1 are Barker codes).

2. for 3 -- 1,

0 00 0
1 0 1

1 1

-1 +j- -j2

V3 is the eigenvector Barker code (of couws. -V 3 is also a good sohutioa).

3. for X4 - -j.

(B + A)0-.-j 000-.,

0

0-I

The eitgnvector , is not a Barker code. Now we *ill prove that for the eiltenvectAor Moponh
BX - Ax,_ only ' +1,- -I I Ma ,, us a leinuto Barker code or G-powpho&d (whre ix- 1).

Fo W" eiWeVC4iot nuppial we require

IIW W) ,

T .,...:•, •:. I XI X). • -

•,.~t i : (59)

o,..I I
1.1 1

23
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From the first row:

kX1+ 2 + .+ XN) XXI. (60)

From summing all the Eqs. in (59) we get:X + X1 + 1 (1
+ "I,+0"x2+0"x3+-..+0"'XN=X(xI+x2+.".+XN). (61)

From (60) and (61):

12. X1 =• X Lx1, (62)

or

x= X2 X1 . (62a)

Equation (62a) can be fulfilled only if:

a. x1 - 0, which will not give a Barker code or G-polphode (requires Jxk 1),

b. X2 = 1 or,

X = ± 1, (63)

which might give a Barker code or a G-polphode.

Thus, an eigenvector code can be achieved only for the eigenvalues A , 1.

The other complex eigenvaloes iX,. - I will not give a desired code (we saw it in the example for
I = 2, where X4 = -j did not :, ,e a Barker code, and, indeed, the first element of the eigenvector 1X4
was x, = 0).

Now we prove that an eigenvector mapping does not have a solution for a Barker code
(x, ± ± 1) for 1 >

If X - (xI, X.2 xN)Tis r'a!, then the eigenvector possibilities are:

for X m t B' - I - X and (64a)
for X - -1: R• - -1 . X. (64b)

Before proceeding with the proof, it will help to observe the case I - 2.

a. BX - 1 X' gives the eigenvector Barker codes
V 1-(++ +)r

b. B.Y - -1 • Xgives the eigenvector Barker codesg• _+ + +)r
-v2 . (+ - - _r

But note that V - (+ - + +)r and -V• - (- + - _)r are not eigenvectors of B, though they
are Barker codes, which are obviously *symmetrical" to the above V, and -V1 . For example,

241
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I.'
22 T 2 2

B2 2 _2 2 --1j

BV'3= 1 1 1 1" = "
T _2 -2 _2

2 2 2 2

Z 3 is not an eigenvector though it is a Barker code. Similarly, V4 - (+++ + -)T and

-Z4 = (- - - +) 7 (which are symmetrical to the above Z2 and -Z2) are Barker codes but not eigen-
vectors of B. This happens because of th& general requirement that a real eigenvector must obey the
fýollc-ving structure (for X - :* 1):

X2 X2

B (65)

CN I x.3

This was explained in Eq. (36) and Fig. 10, for a real code X. But if x, is real (:t 1), then x, -x,

so that Eq. (65) re4uires:

X 2 - X2 - x 2 ,

XN-I - X3 - X3,

XN•.2 - X4- wX4 etc. (66)

We see that V.Y: -Y.i fl. -_*2 above fulfill this requirement (x2 - xd), and th. refore can be real
eiganvectors, On the other hand. V .• - V3. EA. -Zj do not fulfill (66) (since x4 - -X2), and there-
fore cnnot be eigenvectors.

Now to proceed with• the proof, the next candidate for our problem is 1 4 (N 16).

According to the above analysis, for the mat:eigenvectu" mapping. tho code structure must fulfill
Eq. (66). Thus, tho icionvector code must be:

CODE: X1 X. X3 Xj X5 XA, ... xe XS X4  x) x 2

ELEMENT NO, 1 2 3 4 5 6 ... N.4 N-3 N-2 N-I N

where v, is either I or -I (note that the above V,.. - V.L V2. - ,2 fulfill ibis structure).

1To show that this i% impossible for I > 2, we return to the time domain autocorrelation process
• by steps,

FIRST STEP

.. t X4  XJ X 2

A; X2  A,
x1. xj can be *1. so that R(N - 1) a ±1.

25
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SECOND STEP

.... X 5  X4  X 3  X2

X1  X 2  X 3  X4  X 5 ..

R(N - 2) = x2 2 + x1 x= 1 + x1 x3.
Since R (K) is allowed to be 0 or ± 1, it follows that x3 - -X1

THIRD STEP

... X 6  X5  X4  -X 1  X2

x1 x2  -x 1  x4  x5 ...
R (N - 3) - x, (x4 - 2x 2) so that x4  x2.

FORTH STEP

... x 6  x5  x 2  -xI x 2
xt x2  -x1 x2  x5 ...

R (N - 4) - x2 ' X2 + x1 ' x1 + x2 ' x2 + x1 x5 - 3 + x, " xs.

No x1 , x 5 (which are ± 1) can give the desired autocorrelation function (0 or : 1), thus proving that no
real eigenvector code exists for I > 2.

By now, wc see that the remaining possibilities to meet:

8X - Y (68)
1Ix, - 1, 1IY,1t- I

are:

1. Barker code (reaD, x, - ± 1:
x1 YJ

x2 Y2

B - (68.1)

XN Y3i

where Y d X X (not an cigenvector) for I > 2. This possibility has to mcet properties (32) through
(40).

2. G-polphode:

a. B"X ± I -X eigenvactor mapping. (Sec thie appendix for further properties in this case.) (68.2)

b. noneigenvector mapping,._Y ;d X I"

As an example of possibility 2.b, consider the specific polphodes that are given by the generalized

Barker codes 131. These are derived front a "'ather" Barker code . by:

- (x,)• eUt'-/ (69)

where 0 is sonic angle 2v/P (P is an integer)

26
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It is actually the addition to each element (x,)B, of a progressing phase step (0 can be further gen-
eralized). This modification does not change the envelope of the autocorrelation function.

Thus, all the codes defined by (69) form polphodes, some of them are G-polphodes.

Examples for N = 4:

1 1
1 0-90*
I X -1

2 T _2 2

-1
11 1-

2222•

2 2 2 2

We see that X is not an eigenvector, but it is a G-polphode since; R (3) - I, R (1) - J as
requirco hy (16a).

2.11

1: 0_90- X- i
-I - I

1X 1

X is not an eigenvector, but it is a G-polphode since, R (3) - J, R (1) - -J.

I L_±S

<; I I l I +I

2 2 2 2 2 2
•%I 2"2 2J + sin 45'

2 2 2 2 2+ 2-~o4__ _ 1/X- •- (70)I I /_45I I- + j-cos45'

2 2 2 2 2 2y-s~4
AY : 27
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X is a polphode, but not a G-polphode since the autocorrelation funtion is,
R(0) 4, R(1) = 45., R(2) = 0, R(3) = 1 /-45,* and R(1) + R*(3) • 0, in contrast to Eq.
(16a). Note also that the right side of Eq. (70) ýoes not have constant amplitude elements. This last
example shows that there might be polphodes that are not G~polphodes, thus our analysis does not
cover them.

At this point, we review our results as shown in Fig. 11. A question mark denotes codes that
were not investigated in this paper.

CODES

? BARKER TYPE AUTOCORRELATION FUNCTION

REAL (BARKER) POLPNODES
/ t I / I \-

ODD LENGTH EVEN LENGTH OO LENGTH EVEN LENGTH

,5, 7, I1, 13BARKERS

N-2 N., 2  N01E2  N 0, 2  N,1 2

C+-1 / - PoSSILE ?1- ,1,
N,4 J112 G-POLPHOOES NOT G-POLPHODES
1,2 BX, Yo )X / 'LO+'] NON-EIGENVECTOR.

,)PROPERTIES BXtI1X BXYilOX
(32) THROUGH (4O1 EIGENVECTOR-COOE NON-EIGENVECTOR

"1/91 ICODE
ILF•I
IL;g
IL I I

IL94
I• IF

FLt

'REDUCED SEARCH PROBLEM'

Fig. 11 - Review of results; a question mark denotes codes that were not Invcstigated in the paper

Z-TRANSFORM INTERPRETATION

Further insight into the problem of generating a code is achieved by using the Z-transform. Basi-
cally, we need a sequence x,(OxI - 1, 1- 1, 2. N, where N- 12) such that its DFT will have
constant magnitude.

The DFT of a sequence is given by N sampling points of the Z-transform. The sampling points
are uniformly distributed on the unity circle of the Z-planq (see Fig. 12).

28
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Z PLANE

SAMPLING POINTS.

Fig. 12 - The DFT of a sequonce is given by N sampling points (uniformly
distributed on the unity circle) of the Z-transform

The Z-transform of the sequence x1, x2, .... XN is:

X(Z) - x1 + x 2Z-I + x 3Z- 2 + ... + XNZ-(N- 1) (71)

x, ZN-1 + x2 ZN- 2 + x3 ZN-3 + ... + x,,_, Z + xN

Then:

[DFT of xiw-X(Z)J - X X(K) (72)

Z-- WK

where W- e-J2u/N, K - O, 1,...., N - 1.

We see in (71), that X(Z) has N - 1 poles at the origin (Z - 0), and N - 1 zeroes that depend
I on the sequence xi.

If the xi's are real (-t 1), the roots of the polynomial in (71) are either real or complex conjugates
in pairs.

Since N is even, N - I is odd, so that out of the N - I zeroes of X(Z) there will be an even
number of complex conjugate zeroes and an odd number of real zeroes.

Thus X(Z) for a real sequence x, can be factored to the form:

1
X( (Z - Z1)(Z - Z 2)(Z - Z 3) ... (Z - Z 4)(Z - A.. (Z - Z5)(Z - Z;) (73)

odd number of real zeroes pairs of complex conjugate zeroes

Since we are interested in the magnitude of the DFT of the sequence at Z - WK- e-;2wKIN

where K - 0, .... N - 1, we can ignore the (N - 1) poles at the origin (they do not affect the magni-
tude of X(K)).

K i 29
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As an example, examine a Barker code of length 4:

x31 x 2 -1 x3 -- 1 x4 Z 1

X(Z) - I + Z- Z+- Z-2 + Z-3 (Z-Z(Z- Z2)(Z- Z 3) (74)
Z 3  

Z3

Carrying out the factorization we get:

Z, " -1.84, Z2 - 0.42 + jO.6, Z3  0.42 - j0.6- Z*.

Those values are calculated approximately for the sake of illustration (see Fig. 13).

21 =-~1.84

Z3

W~D

Fig. 13 - Poles and zeroes of the Z-transform for Barker code 4.
A. B, C, D are sampling points of the Z-transform.

The sampling points of X(Z) are A, B, C, D. When X(Z) is evaluated at those points, we get
the DFT X(K) of the sequence.

As a geometrical interpretation, we see that the exact values of Z1, Z2, Z3 present an exact sym-
metry" towards the sampling points A, B, C, D, in the sense that the product of the magnitudes of the
three phasors (from the sampling point to the zeroes Z1, Z2, Z3) gives exactly the value 2, for each
sampling point. In Fig. 13, we sketched the three phasors for the sampling point B.

"For point B:

(,/- ZI) (- Z2) (Q- Z3)1- lal '1421' la31 - 2. (75.1)

For point A:

1(0 - ) (1- Z2) (1-4)- 2, (75.2)

and similarly for points C and D.

This property (75) is evident when looking at the Z transform:

SX(Z) - I + Z-1 - Z-1 + Z-1, (76)

and substituting directly the sampling points A, B, C, D. But from a geometric point of view, it is a
rare combination of the zeroes of X(Z), that present such a "nice" symmetry.

30
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I. Notice, however, that these specific zeroes of Barker code 4 (Z1, Z3) do not present the
above symmetry towards any number of uniformly distributed sampling points on the unity circle. For
example, for eight uniformly distributed sampling points, one of them will be Z - e"'/4, and substitut-
ing it in (76):

IX(Z - ejw"4)1 _- II + e-J"r4 -e-Jr/ 2 + e-Jr/4l • 2,

which means that these specific zeroes of Barker code 4 cannot be "used" for generating higher length
codes.

Of course, the same analysis holds for a complex sequence Ixii - 1, except that the N - 1 zeroes
of X(Z) will not be in conjugate pairs. But again for a G-polphode, these N - I zeroes of X(Z) are
required to present the above "symmetry" towards the N sampling points Z - Wl.

One might suspect that some uniform distribution of the zeroes of X(Z) will give the desired
symmetry. A moment of reflection shows that it is impossible since we have N - 1 zeroes of X(Z)
and N sampling points.

This means that if there is a solution, the zeroes of X(Z) will be distributed on the Z plane in
some "rare" combination (and, of course, not on the unity circle).

Beyond the above "symmetry" these N - 1 zeroes of X(Z) must fulfill other requirements.

Suppose we found some "symmetric" structure (in the above sense) of the zeroes, Z1, Z2,
"ZN_..

Then:

X(Z) - (Z- Z) (Z -Z 2) ... (Z- ZN l) X ZN + X2 ZN-2 +... + XN (77)
ZN-I ZN-I

X(Z) ZN-I • (-Z 1) (-Z 2) ... (-ZN-1) - (78)

Z-0

i.e.;
IZ •Z2",. ZN-11" I, (81

which means that some of the zeroes are outside the unity circle while the others are inside, such that
their product has unity magnitude.

Another point to mention is that the necessary condition Is "similar" to designing an exact all pass

-- I , •i: discrete filter whose finite impulse response is h(n) - (xi,xI .... x;}, where Ix I -x .

In Ref. 5, it is shown that an all-pass discrete filter has a Z transform that factors to terms of the
form:

i.0 1 a-1 Z"_I V HtH(Z) -Ma Z (79)
1 - a Z

I *,. where 0 < a < I (a Is real), such that the pole and the zero in (79) give a constant amplitude for

every frequency. This is actually more than we need, since our requirement is to have constant ampli-
tude I only in the N sampling points of X(Z). But, of course, in our problem, since we have a finite
length, we don't have poles of X(Z) (except those in the origin), and we cannot get terms of the form
"(79).
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FINAL COMMENTS

: 1. It is interesting to note that Frank codes of even length meet the requirements of constant
amplitude DFT, and R (K) + R*(N - K) - 0, but still they don't form G-polphodes. For example,
the Frank code of length N - 16 is:

*1(deg): 0, 0, 0, 0, I 0, 90. 180, -90, I 0, 180, 0, 180, I 0, -90, 180, 90 I (80)
I/Lo I/Lo
I L W
1,o 1/-90
I Lo -W

I1L90 1L

B 1/-90 W'

1 /189 -W

1 /180 W

I /Lo IL
I L-9 /o,

I /180 -W

where W- e-/16 1/-22.5o.

Also, it is easy to verify that R (K) + R*(N - K) - 0, but clearly some time sidelobes of the
Frank code are bigger than unity magnitude.

This provides evidence again that our analysis gave necessary conditions, but not sufficient ones.
Therefore, we have to search for the solution.

Note also that Barker 4 codes are actually a special case of Frank codes. The analysis can help in
searching for structures of either the code sequence xj, or the distribution of the zeroes of X(Z).

2. An issue to be further investigated: Is it possible to approximate the requirement of constant
amplitude DFT of the sequence, and thus approach the "Barker level" of the autocorrelation function?
At least intuitively we might think that a constant amplitude DFT Is a "good property."

CONCLUSION

The motivation for the analysis was to find a finite length code with Barker type autocorrelation
function beyond the known ones. Though no specific code was found, the analysis derived necessary
requirements for even-length Barker codes and G-polphodes. These requirements can reduce the
search problem for the above codes.

The different points of view presented here (time domain, DFT of sequences, the Z-transforni
geometrical Interpretation, linear algebra) might also suggest structures and properties of good codes,
which only approach the Barker level in the autocorrelation function.
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Appendix

FURTHER PROPERTIES OF AN EIGENVECTOR G-POLPHODE

We have seen that an eigenvector G-polphode must fulfill Eq. (68.2) of the text:

BX-± I-X (Al)

Let X. L be eigenvectors of B, which correspond to k - + 1, X - -1, respectively.
41.a - XA, (also B*X, - X•) (A.2.1)

A& - lb (also B*b -Xb) (A.2.2)

From (A.2.1), multiplying both sides by 0.

BBX - BX-* B 2X - X. (A.3)

Similarly, from (A.2.2):

Bk•b - -gX~b * BI _X - It,, (A.4)

i.e., 1. and lb are also eigenvectors of B2; both correspond to the eigenvalue X. - 1 of B2.

The matrix B2 (N x Nmolrix) is:

1 000 '0 0
0000 1. 0O
0000 ... 1 0

B2 (A.5)

0001 0 . 0
0010 0 .. 0ii0100.'" 0

The matrix B2 has N eigenvalues; some of them are X - I. and the others are A - -I (by the
way, the eigenvalues A - ± I of B map to the eigenvalue X - 1 of B).

From (A.3), (A.5): 11

X2  XN X2
X3 XsN-I X)

X4 X1-2 X4

B2X B2  -_- (A.6)

X)V-2 X4 4-2
XN-1 X3 4- 1
XN X2 XN
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. i.e.,:

XN- X 2, XV-" X 3, XN-2- X4, etc. (A.7.1)

The same analysis holds for Xb, so that if a G-polphode eigenvector exists, it must have the struc-

ture:

1LaI

1/a 2  1/#2

L/a3 1/P3

X- 1 ; - l/##/2+I (A.7.2)

i/aV/+ 4 /+

L/a3L0

Now from (A.2.1) (by conjugatinj we get:

(A.8)

88' • - 8- -. 8 - x-, (A.9)

and similarly,

(A. 1)

Equations (A.2,I) and (A.9) mean that ifX' is an clgenvcctor of 8 (for ? - I), then " is also
an cigonvoctor of 8 (also for X - I). If X is real, then N* - _X, (they are identical).

But we look for an eigenvector code _X. (in which IX,' - 0). We have seen in the text, that such
an X. cannot be real for I > 2. So X., if it exists, is a polyphase code. Therefore, .V s agow
(linearly independent to L) elgenvector code.

Similarly, if X is an c vector code (for 1 - -1), then .j is another (linearly indeperdent)

eigenvector code.

To summamize. the eigenvector G-polphodes (for I > 2) will fulfill:
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Lota I I Lai•. I °•'• I -•:•

I/a2  LO/a2  I/-a 2  /-a2

1/a3  1/a3  1/-a 3  LM-a

Noet 1 {, N)2+1 n 1 /aN/2+ ) Ih- N1 + 1 / (IAN.•o1

La I/a3 1/-a3 9a

I LA__ LP 1 L(A12

_____ 1___ 1p LO

Note that in (A.t I), and similarly in (A. 12), out or the N equations, ror ;X we have M/2- I
redundant equations which can be eraed; the last equation is identical to the second, the (N - O)th

equation is identical to the third, etc. Thtus, if we ertae the Ima N12 - I equations, wte are left with

N/2 + I equations (some of them are also redundant) that should be %olved purmearicwlly for a,. aj.

Since we have parametric relations for the a,'s. we have to choose some of them such Out we get

the desired autocorrelation function. This aiwn is a search problem.

ApplyinS the abovc analyss for N -16 we get:
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After solving the N12 + 1 - 9 equations, we get the parametric relations:

[1/ + I as + I/a71-1/2 l /ai + I 1/_a1.

'II /a + L/_ + /a6 + I/0a81- (1/.r- 1/_.1,

r* 0 N+ Ll 1  -1 a3 I 1a (A.13)! " [I L•- i/ - L2A6 1 + - 12-i L... •cos (2-21r/16)'

and

I - cos (2vr116)

(1/0-1 a~1-[1/@~ 1 211 cos (3 -2v/ 16)

Since the conjugate code X*. is also an eigenvector (also for X - 1), we must have the above four
relations when 1 4a. is replaced by 1 /-_a. Adding and subtracting equations in the above eight reoa-
tions (complex) gives eight real trlations-Twith cos a, and sin a,).

For example, the first equation of (A. 13) together with the corresponding one (with I /-a,)

result in:

COS a) + Cos o$+ + cos 1/2 (c a+cos+ a

and

sin a• + sin at$ - sin *7 -a 1/2 (sin ot, + sin a,).

A code (of length 16) that satisfies the eight relation is a candidate for cigeovector (-poiphode

(has to be veuified in the time domain).

Note also that if the structure (A. 11) Is a 0-polphode. it is required that for any. length M

2w/3 C o-4 , 4v/3,
since the second step of the autocnelation proces• ives:

RON - 2) l( ItLO.+LO
and its magnituic must be smallr than or equal to one.

I4.


